본문 바로가기

AUDIO_/Flowing_

Window function_

High- and moderate-resolution windows

Rectangular window
 
Rectangular window; B=1.00
w(n) = 1\,

The rectangular window is sometimes known as a Dirichlet window. It is the simplest window, taking a chunk of the signal without any other modification at all, which leads to discontinuities at the endpoints (unless the signal happens to be an exact fit for the window length, as used in multitone testing, for instance). The first side-lobe is only 13 dB lower than the main lobe, with the rest falling off at about 6 dB per octave.

Hann window

 
Hann window; B = 1.50
w(n) = 0.5\; \left(1 - \cos \left ( \frac{2 \pi n}{N-1} \right) \right) 
  • Note that:

w_0(n) = 0.5\; \left(1 + \cos \left ( \frac{2 \pi n}{N-1} \right) \right)

The ends of the cosine just touch zero, so the side-lobes roll off at about 18 dB per octave.

The Hann and Hamming windows, both of which are in the family known as "raised cosine" windows, are respectively named after Julius von Hann and Richard Hamming. The term "Hanning window" is sometimes used to refer to the Hann window.

 Hamming window

 
Hamming window; B=1.37

The "raised cosine" with these particular coefficients was proposed by Richard W. Hamming. The window is optimized to minimize the maximum (nearest) side lobe, giving it a height of about one-fifth that of the Hann window, a raised cosine with simpler coefficients.

w(n) = 0.54 - 0.46\; \cos \left ( \frac{2\pi n}{N-1} \right) 
  • Note that:

\begin{align}
w_0(n)\ &\stackrel{\mathrm{def}}{=}\ w(n+\begin{matrix} \frac{N-1}{2}\end{matrix})\\
&= 0.54 + 0.46\; \cos \left ( \frac{2\pi n}{N-1} \right)
\end{align}

Tukey window

 
Tukey window, α=0.5; B=1.22


w_0(n) = \left\{ \begin{matrix}
\frac{1}{2} \left[1+\cos \left(\pi \left( \frac{2 n}{\alpha N}-1 \right) \right) \right]
& \mbox{when}\, 0 \leqslant n \leqslant \frac{\alpha N}{2} \\ [0.5em]
1 & \mbox{when}\, \frac{\alpha N}{2}\leqslant n \leqslant N (1 - \frac{\alpha}{2}) \\ [0.5em]
\frac{1}{2} \left[1+\cos \left(\pi \left( \frac{2 n}{\alpha N}- \frac{2}{\alpha} + 1 \right) \right) \right]
& \mbox{when}\, N (1 - \frac{\alpha}{2}) \leqslant n \leqslant  N \\
\end{matrix} \right.

The Tukey window, also known as the tapered cosine window, can be regarded as a cosine lobe of width \tfrac{\alpha N}{2} that is convolved with a rectangle window of width \left(1 -\tfrac{\alpha}{2}\right)N. At α=0 it becomes rectangular, and at α=1 it becomes a Hann window.

Cosine window

 
Cosine window; B=1.24
w(n) = \cos\left(\frac{\pi n}{N-1} - \frac{\pi}{2}\right) = \sin\left(\frac{\pi n}{N-1}\right) 
  • also known as sine window
  • cosine window describes the shape of w_0(n)\,

Lanczos window

 
Sinc or Lanczos window; B=1.31
w(n) = \mathrm{sinc}\left(\frac{2n}{N-1}-1\right)
  • used in Lanczos resampling
  • for the Lanczos window, sinc(x) is defined as sin(πx)/(πx)
  • also known as a sinc window, because:
w_0(n) = \mathrm{sinc}\left(\frac{2n}{N-1}\right)\, is the main lobe of a normalized sinc function

Triangular windows

 
Bartlett window; B=1.33

Bartlett window with zero-valued end-points:

w(n)=\frac{2}{N-1}\cdot\left(\frac{N-1}{2}-\left |n-\frac{N-1}{2}\right |\right)\,

Triangular window; B=1.33

With non-zero end-points:

w(n)=\frac{2}{N}\cdot\left(\frac{N}{2}-\left |n-\frac{N-1}{2}\right |\right)\,

Can be seen as the convolution of two half-sized rectangular windows, giving it a main lobe width of twice the width of a regular rectangular window. The nearest lobe is -26 dB down from the main lobe.

Gaussian windows

 
Gauss window, σ=0.4; B=1.45

The frequency response of a Gaussian is also a Gaussian (it is an eigenfunction of the Fourier Transform). Since the Gaussian function extends to infinity, it must either be truncated at the ends of the window, or itself windowed with another zero-ended window.

Since the log of a Gaussian produces a parabola, this can be used for exact quadratic interpolation in frequency estimation.

w(n)=e^{-\frac{1}{2} \left ( \frac{n-(N-1)/2}{\sigma (N-1)/2} \right)^{2}}
\sigma \le \;0.5\,

Bartlett–Hann window

 
Bartlett-Hann window; B=1.46
w(n)=a_0 - a_1 \left |\frac{n}{N-1}-\frac{1}{2} \right| - a_2 \cos \left (\frac{2 \pi n}{N-1}\right )
a_0=0.62;\quad a_1=0.48;\quad a_2=0.38\,

Blackman windows

 
Blackman window; α = 0.16; B=1.73

Blackman windows are defined as:

w(n)=a_0 - a_1 \cos \left ( \frac{2 \pi n}{N-1} \right) + a_2 \cos \left ( \frac{4 \pi n}{N-1} \right)
a_0=\frac{1-\alpha}{2};\quad a_1=\frac{1}{2};\quad a_2=\frac{\alpha}{2}\,

By common convention, the unqualified term Blackman window refers to α=0.16.

Kaiser windows

 
Kaiser window, α =2; B=1.5

 
Kaiser window, α =3; B=1.8

A simple approximation of the DPSS window using Bessel functions, discovered by Jim Kaiser.

w(n)=\frac{I_0\Bigg (\pi\alpha \sqrt{1 - (\begin{matrix} \frac{2 n}{N-1} \end{matrix}-1)^2}\Bigg )} {I_0(\pi\alpha)}

where I0 is the zero-th order modified Bessel function of the first kind, and usually α = 3.

  • Note that:

w_0(n) = \frac{I_0\Bigg (\pi\alpha \sqrt{1 - (\begin{matrix} \frac{2 n}{N-1} \end{matrix})^2}\Bigg )} {I_0(\pi\alpha)}


Low-resolution (high-dynamic-range) windows

Nuttall window, continuous first derivative

 
Nuttall window, continuous first derivative; B=2.02
w(n)=a_0 - a_1 \cos \left ( \frac{2 \pi n}{N-1} \right)+ a_2 \cos \left ( \frac{4 \pi n}{N-1} \right)- a_3 \cos \left ( \frac{6 \pi n}{N-1} \right) 
a_0=0.355768;\quad a_1=0.487396;\quad a_2=0.144232;\quad a_3=0.012604\,


Blackman–Harris window

 
Blackman–Harris window; B=2.01

A generalization of the Hamming family, produced by adding more shifted sinc functions, meant to minimize side-lobe levels

w(n)=a_0 - a_1 \cos \left ( \frac{2 \pi n}{N-1} \right)+ a_2 \cos \left ( \frac{4 \pi n}{N-1} \right)- a_3 \cos \left ( \frac{6 \pi n}{N-1} \right) 
a_0=0.35875;\quad a_1=0.48829;\quad a_2=0.14128;\quad a_3=0.01168\,

Blackman–Nuttall window

 
Blackman–Nuttall window; B=1.98
w(n)=a_0 - a_1 \cos \left ( \frac{2 \pi n}{N-1} \right)+ a_2 \cos \left ( \frac{4 \pi n}{N-1} \right)- a_3 \cos \left ( \frac{6 \pi n}{N-1} \right) 
a_0=0.3635819; \quad a_1=0.4891775; \quad a_2=0.1365995; \quad a_3=0.0106411\,

Flat top window

 
Flat top window; B=3.77
w(n)=a_0 - a_1 \cos \left ( \frac{2 \pi n}{N-1} \right)+ a_2 \cos \left ( \frac{4 \pi n}{N-1} \right)- a_3 \cos \left ( \frac{6 \pi n}{N-1} \right)+a_4 \cos \left ( \frac{8 \pi n}{N-1} \right) 
a_0=1;\quad a_1=1.93;\quad a_2=1.29;\quad a_3=0.388;\quad a_4=0.032\,
728x90

'AUDIO_ > Flowing_' 카테고리의 다른 글

클리펠 교육  (0) 2013.07.31
Equivalent Rectangular Bandwidth (ERB)  (3) 2010.11.01
Seminar in Korea_  (2) 2010.10.20
Bob McCarthy introduces SIM 3 seminar  (1) 2010.10.01
SAM BERKOW ON LINE ARRAYS  (1) 2010.08.03